Part Number Hot Search : 
V150K5 SMAJ16CA A4650 MPS5127C KKA7050 FN3322 T74FC XL6019
Product Description
Full Text Search
 

To Download TSH80 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH80-TSH81-TSH82
WIDE BAND, RAIL to RAIL OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
s 4.5V, 12V OPERATING CONDITIONS s 3dB-BANDWIDTH: 100MHz s SLEW-RATE: 100V/s s OUTPUT CURRENT: up to 55mA s INPUT SINGLE SUPPLY VOLTAGE s OUTPUT RAIL TO RAIL s SPECIFIED FOR 150 LOAD s LOW DISTORTION, THD: 0.1% s SOT23-5, TSSOP and SO PACKAGES
DESCRIPTION The TSH8x serie offers Single and Dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150 loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(2.5V) and 10V(5V) supplies. The TSH81 also features a Standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO8 packages. APPLICATION
P TSSOP8 (Plastic Micro package) L SOT23-5 (Plastic Micro package)
D SO8 (Plastic Micro package)
PIN CONNECTIONS (top view)
TSH80 : SOT23-5/SO8
Output 1 VCC - 2 Non-Inv. In. 3 5 VCC + NC 1 Inv. In. 2 4 Inv. In. Non-Inv. In. 3 VCC - 4 _ + 8 NC 7 VCC + 6 Output 5 NC
+-
TSH81 : SO8/TSSOP8
NC 1 Inverting Input 2 Non Inverting Input 3 VCC - 4 _ + 8 STANDBY 7 VCC + 6 Output 5 NC
TSH82 : SO8/TSSOP8
Output1 1 8 VCC + _ + _ + 7 Output2 6 Inverting Input2 5 Non Inverting Input2 Inverting Input1 2 Non Inverting Input1 3 VCC - 4
s Video Buffers s A/D Converters Driver s Hi-Fi Applications
February 2003
1/18
TSH80-TSH81-TSH82
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vid Supply Voltage
3) 1)
Parameter Differential Input Voltage 2) Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal resistance junction to case 4) SOT23-5 SO8 TSSOPO8 Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 Human Body Model
Value 14
Unit V
2 6
-40 to +85 -65 to +150 150 80 28 37 250 157 130 2
V V
C C C C/W
Vi Toper
Tstg Tj Rthjc
Rthja
C/W kV
ESD
1. 2. 3. 4.
All voltage values, except differential voltage are with respect to network ground terminal Differential voltages are non-inverting input terminal with respect to the inverting terminal The magnitude of input and output must never exceed VCC +0.3V Short-circuits can cause excessive heating
OPERATING CONDITIONS
Symbol VCC VIC Standby Supply Voltage Common Mode Input Voltage Range
-
Parameter
Value 4.5 to 12 VCC to (VCC -1.1) (VCC ) to (VCC )
+ +
Unit V V V
ORDER CODES
Type TSH80ILT TSH80ID TSH80IDT TSH81ID TSH81IDT TSH81IPT TSH82ID TSH82IDT TSH82IPT Temperature -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C Package SOT23-5 SO8 SO8 Tape SO8 SO8 Tape TSSOP8 SO8 SO8 Tape TSSOP8 Marking K303 TSH80I TSH80I TSH81I TSH81I TSH81I TSH82I TSH82I TSH82I
I = Temperature range D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT) L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)
2/18
TSH80-TSH81-TSH82
ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Symbol |Vio| Vio Iio Iib Cin ICC CMR SVR PSR Parameter Input Offset Voltage Input Offset Voltage Drift vs Temperature Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (Vic/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Large Signal Voltage Gain Tamb = 25C Tmin. < Tamb < Tmax. +0.172 70 68 65
97 75 75
Avd
75 70
84
dB
Io
Output Short Circuit Current Source
35 33
55 55
mA
28 28 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93
4.5
Voh
High Level Output Voltage
V
Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V
4.1 4.4
3/18
TSH80-TSH81-TSH82
Symbol
Parameter
Test Condition Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND
Min.
Typ. 48 54 55 56 220 105 76 61
Max. 150
Unit
Vol
Low Level Output Voltage
RL RL RL RL
= 150 to 2.5V = 600 to 2.5V = 2k to 2.5V = 10k to 2.5V
400 mV
Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V GBP Bw Gain Bandwidth Product Bandwidth @-3dB F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150 to 2.5V AVCL =+2 RL=150 // CL to 2.5V CL = 5pF CL = 30pF RL=150 // 30pF to 2.5V F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to 2.5V Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to 2.5V F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150 to 2.5V F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz 65 55 87
200 450 MHz MHz
SR m en THD
Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion
60
104 105 40 11
V/s nV/Hz dB
-61 -54
IM2
Second order inter modulation product
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G Df
Differential gain Differential phase
0.5 0.5 0.2 65
% dB dB
Gf Gain Flatness Vo1/Vo2 Channel Separation
4/18
TSH80-TSH81-TSH82
ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Symbol |Vio| Vio Iio Iib Cin ICC CMR SVR PSR Parameter Input Offset Voltage Input Offset Voltage Drift vs Temperature Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (Vic/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Large Signal Voltage Gain Tamb = 25C Tmin. < Tamb < Tmax. -4.981 72 71 65
106 77 75
Avd
75 70
86
dB
Io
Output Short Circuit Current Source
35 30
55 55
mA
28 28 4.2 4.36 4.85 4.9 4.93
Voh
High Level Output Voltage
V
4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV
Vol
Low Level Output Voltage
-4.3 65 55 100 MHz MHz
GBP Bw
Gain Bandwidth Product Bandwidth @-3dB
5/18
TSH80-TSH81-TSH82
Symbol
Parameter
Test Condition AVCL =+2 RL=150 // CL to GND CL = 5pF CL = 30pF RL=150 to gnd F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to gnd Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to gnd F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150 to gnd F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz
Min.
Typ.
Max.
Unit
SR m en THD
Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion
68
117 118 40 11
V/s nV/Hz dB
-61 -54
IM2
Second order inter modulation product
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G Df
Differential gain Differential phase
0.5 0.5 0.2 65
% dB dB
Gf Gain Flatness Vo1/Vo2 Channel Separation
6/18
TSH80-TSH81-TSH82
STANDBY MODE VCC+, VCC-, Tamb = 25C (unless otherwise specified)
Symbol Vlow Vhigh ICC SBY Zout Ton Toff Parameter Standby Low Level Standby High Level Current Consumption per Operator when STANDBY is Active Output Impedance (Rout//Cout) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode pin 8 (TSH81) to VCCRout Cout Test Condition Min. VCC(VCC- +2) 20 10 17 2 Down to ICC SBY = 10A 10 OPERATOR STATUS Standby Active Typ. Max. (VCC+0.8) (VCC+) 55 Unit V V A M pF s s
TSH81 STANDBY CONTROL pin 8 (SBY) Vlow Vhigh
7/18
TSH80-TSH81-TSH82
Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= 2.5V, RL=150, Tamb = 25C
10 200
Overshoot function of output capacitance Gain=+2, Vcc= 2.5V, Tamb = 25C
10
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
0 -5
Gain (dB)
Phase ()
0
150//10pF
150
0
Phase
-100
-10
-15 1E+4
-200 1E+5 1E+6 1E+7 1E+8 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= 2.5V, RL=150, Tamb = 25C
30 200
Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= 2.5V, RL=150, Tamb = 25C
30 0
Phase
20
150
Phase
20
100
-50
Gain (dB)
Phase ()
Gain
10 50
Gain (dB)
10
0 0 -50
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk
3
Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk
3
2
2
1
1
Vout (V)
Vout (V)
0
0
-1
-1
-2
-2
-3 0 10 20 30 40 50 60 70 80
-3 0 10 20 30 40 50 60 70
Time (ns)
Time (ns)
8/18
Phase ()
Gain
TSH80-TSH81-TSH82
Small Signal Measurement - Rise Time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk
0.06
Small Signal Measurement - Fall Time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin Vout (V)
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Channel separation (Xtalk) vs frequency Measurement configuration: Xtalk=20log(V0/V1)
VIN
49.9
Channel separation (Xtalk) vs frequency Gain=+11, Vcc=2.5V, ZL=150//27pF
-20
+ + 150
-30
V1
Xtalk (dB)
-40
4/1output
-50
100 1k
3/1output
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Equivalent Noise Voltage Gain=100, Vcc=2.5V, No load
30
+ _
10k 100
Maximum Output Swing Gain=11, Vcc=2.5V, RL=150
3
25
2
Vout
Vin, Vout (V)
1
en (nV/Hz)
20
Vin
0
15
-1
10
-2
5 0.1 1 10 100 1000
-3 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
9/18
TSH80-TSH81-TSH82
Standby Mode - Ton, Toff Vcc= 2.5V, Open Loop
3 2
Group Delay Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C
Vin
Vin, Vout (V)
1 0 -1 -2
Gain
Vout
Group Delay 5.32ns
-3 0
Ton
2E-6
Standby
4E-6 6E-6
Toff
8E-6 1E-5
Time (s)
Third Order Inter modulation Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C Inter modulation products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
0 -10 -20 -30
IM3 (dBc)
-40 -50
740kHz 80kHz
-60 -70 -80 -90 -100 0 1 2 3 4
380kHz
640kHz
Vout peak(V)
10/18
TSH80-TSH81-TSH82
Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= 5V, RL=150, Tamb = 25C
10 200
Overshoot function of output capacitance Gain=+2, Vcc= 5V, Tamb = 25C
10
150//33pF
5
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100 -10
-15 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= 5V, RL=150, Tamb = 25C
30 200
Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= 5V, RL=150, Tamb = 25C
30 0
Phase
150 20 100
Phase
20
Phase ()
Gain
10
Gain (dB)
Gain (dB)
10
50
-100
0 0
0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-50 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk
5 4 3 2
Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk
5 4 3 2
Vout (V)
Vout (V)
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Time (ns)
Time (ns)
11/18
Phase ()
Gain
-50
TSH80-TSH81-TSH82
Small Signal Measurement - Rise Time Gain=2,Vcc=5V,ZL=150,Vin=400mVpk
0.06
Small Signal Measurement - Fall Time Gain=2,Vcc=5V,ZL=150,Vin=400mVpk
0.06
0.04
0.04
Vin, Vout (V)
Vin, Vout (V)
0.02
0.02
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Channel separation (Xtalk) vs frequency Measurement configuration: Xtalk=20log(V0/V1)
VIN
49.9
Channel separation (Xtalk) vs frequency Gain=+11, Vcc=5V, ZL=150//27pF
-20
+ 150
-30
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Equivalent Noise Voltage Gain=100, Vcc=5V, No load
30
Maximum Output Swing Gain=11, Vcc=5V, RL=150
5 4
25
+ _
10k
3 2
Vout
Vin, Vout (V)
100
en (nV/Hz)
20
1 0 -1 -2
Vin
15
10
-3 -4
5 0.1 1 10 100 1000
-5 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
12/18
TSH80-TSH81-TSH82
Standby Mode - Ton, Toff Vcc=5V, Open Loop
Vin
5
Group Delay Gain=2, Vcc=5V, ZL=150//27pF, Tamb = 25C
Vin, Vout (V)
Vout
0
Gain
Group Delay
-5
5.1ns
Ton
0 2E-6
Standby
4E-6 6E-6
Toff
8E-6
Time (s)
Third Order Inter modulation Gain=2, Vcc=5V, ZL=150//27pF, Tamb = 25C Inter modulation products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
0 -10 -20 -30
IM3 (dBc)
-40 -50 -60 -70 -80 -90
80kHz 740kHz
640kHz
-100 0 1 2 3
380kHz
4
Vout peak(V)
13/18
TSH80-TSH81-TSH82
TESTING CONDITIONS: Layout precautions: To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. - Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. - Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. - For lower gain application, attention should be paid not to use large feedback resistance (>1k) to reduce time constant with parasitic capacitances. - Choose component sizes as small as possible (SMD). - Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. CCIR330 video line Maximum input level: The input level must not exceed the following values:
u negative peak: must be greater than
-Vcc+400mV.
u positive peak value: must be lower than
+Vcc-400mV. The electrical characteristics show the influence of the load on this parameter. Video capabilities: To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the colour of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, colour saturation is not correctly reproduced. The input generator is the Rohde & Schwarz CCVS. The output measurement is done by the Rohde and Schwarz VSA. Measurement on Rohde and Schwarz VSA.
14/18
TSH80-TSH81-TSH82
Video Results:
Parameter Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5 Value (Vcc=2.5V) 0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2 Value (Vcc=5V) 0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1 Unit % % % % % % % % % % % % % % deg deg deg deg deg deg deg deg
Precautions on asymmetrical supply operation: The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs.
IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 -
R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7k. Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10k, RL=150, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Use of the TSH8X in gain=-1 configuration:
Cf 1k
Cout OUT
IN Cin
1k Vcc+ R2 R3 C1 C2 C3
+
Cout OUT RL
R5
Cf
RL
R1
R1=10k will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF.
Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit.
15/18
TSH80-TSH81-TSH82
Parameter Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB
Cf (pF) 0 5.6 22 33
Vcc=1.5V 28 40 30 40 37 37 48 33.7
Vcc=2.5V 43 39.3 43 39.3 52 34 65 30.7
Vcc=5V 56 38.3 56 38.3 67 32 78 27.6
Unit deg MHz deg MHz deg MHz deg MHz
Example of a video application:
Vcc/2 IN Ce Rb1 AOP1 + R2 R1 Vcc/2 Cf V1 R3 C3 V2 A1 LPF1 PAL V3 R4
Vcc/2 C4 Rb1
Re
+ -
AOP2
R6 Vcc/2 NTSC R7 C7 A2 LPF2 R8 R5 Cf Standby Vcc/2 C8 Rb1
V4
Rout Cout OUT RL
+ AOP3 R10
Vcc/2 R9
Cf Standby
This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10k. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1k,V1=2Vpk, V2=1Vpk For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300 and R6=1k. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same.
16/18
TSH80-TSH81-TSH82
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k c
0.25mm .010 inch GAGE PLANE
L1
L
L
L1
E1
SEATING PLANE
A A2 A1 5 D b 8
8
C
E
4 e
5
PIN 1 IDENTIFICATION
Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4.0 0.150 1.27 0.016 0.6 8 (max.) Typ. Max. Min.
Inches Dim. Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 0.157 0.050 0.024 A A1 A2 b c D E E1 e k l Min. 0.05 0.80 0.19 0.09 2.90 4.30 0 0.50
Millimeters Typ. Max. 1.20 0.15 1.05 0.30 0.20 3.10 4.50 8 0.75 Min. 0.01 0.031 0.007 0.003 0.114 0.169 0 0.09
Inches Typ. Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177
1.75 0.25 0.004 1.65 0.85 0.026 0.48 0.014 0.25 0.007 0.5 0.010 45 (typ.) 5.0 0.189 6.2 0.228
1.00
0.039
3.00 6.40 4.40 0.65 0.60
0.118 0.252 0.173 0.025
8 0.0236 0.030
1
4
1
17/18
TSH80-TSH81-TSH82
PACKAGE MECHANICAL DATA 5 PINS - TINY PACKAGE (SOT23)
A
E
A2
E
D D1
B
A1
L C
F
Millimeters Dim. Min. A A1 A2 B C D D1 e E F L K 0.90 0 0.90 0.35 0.09 2.80 Typ. 1.20 1.05 0.40 0.15 2.90 1.90 0.95 2.80 1.60 0.5 Max. 1.45 0.15 1.30 0.50 0.20 3.00 Min. 0.035 0.035 0.014 0.004 0.110
Inches Typ. 0.047 0.041 0.016 0.006 0.114 0.075 0.037 0.110 0.063 0.014 Max. 0.057 0.006 0.051 0.020 0.008 0.118
2.60 1.50 0.10 0d
3.00 1.75 0.60 10d
0.102 0.059 0.004 0d
0.0118 0.069 0.024 10d
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com
18/18


▲Up To Search▲   

 
Price & Availability of TSH80

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X